
2D Signals and Systems



Signals

• A signal can be either continuous
• or discrete       etc. where i,j,k index specific coordinates

f (x), f (x, y), f (x, y, z), f (x)
fi, j ,k

• Digital images on computers are necessarily discrete
sets of data

• Each element, or bin, or voxel, represents some value,
either measured or calculated



Digital Images

• Real objects are continuous (at least above the quantum level), but we
represent them digitally as an approximation of the true continuous process
(pixels or voxels)

• For image representation this is usually fine (we can just use smaller voxels
as necessary)

• For data measurements the element size is critical (e.g. Shannon's sampling
theorem)

• For most of our work we will use continuous function theory for convenience,
but sometimes the discrete theory will be required



Important signals - rect() and sinc() functions

• 1D rect() and sinc() functions
– both have unit area

(a)   rect(x) =
1, for x <1 / 2
0, for x >1 / 2

!
"
#

(b)   sinc(x) = sin($ x)
$ x

what is sinc(0)?



Important signals - 2D rect() and sinc() functions

• 2D rect() and sinc() functions are straightforward generalizations

• Try to sketch these
• 3D versions exist and are sometimes used
• Fundamental connection between rect() and sinc() functions and very

useful in signal and image processing

(a)   rect(x, y) =
1, for x <1 / 2  and y <1 / 2
0, otherwise

!
"
#

(b)   sinc(x, y) = sin($ x)sin($ y)
$ 2xy



Important signals - Impulse function

• 1D Impulse (delta) function
• A 'generalized function'

– operates through integration
– has zero width and unit area
– has important 'sifting' property
– can be understood by considering:

• Ways to approach the delta function

! (x) = 0, x " 0,

! (x)
#$

$

% dx = 1

f (x)! (x)
#$

$

% dx = f (0)

f (x)! (x # t)
#$

$

% dx = f (t)

! (t) = lim
a"#

a rect(at)   ! (t) = lim
a"#

asinc(at)   ! (t) = lim
a"#

ae$%a
2t2



• Recall Euler's formula,which connects trigonometric and
complex exponential functions

• The exponential signal is defined as:

• u0 and v0 are the fundamental frequencies in x- and y-
directions, with units of 1/distance

• We can write

Exponential and sinusoidal signals

e(x, y) = e j2! (u0 x+v0 y)

e j2! x = cos(2! x)+ j sin(2! x),    where j2 = "1

e(x, y) = e j2! (u0x+v0y)

= cos 2! u0x + v0y( )"# $% + j sin 2! u0x + v0y( )"# $%

real and even imaginary and odd

(not i)e j! = cos(! )+ j sin(! )



Exponential and sinusoidal signals

• Recall that

• so we have

• Fundamental frequencies u0, v0 affect the oscillations in x and y
directions, E.g. small values of u0 result in slow oscillations in the x-
direction

• These are complex-valued and directional plane waves

sin(2! x) = 1
2 j

e j2! x " e" j2! x( )

cos(2! x) = 1
2
e j2! x + e" j2! x( )

cos 2! u0x + v0y( )"# $% =
1
2
e j2! u0x+v0y( ) + e& j2! u0x+v0y( )( )

sin 2! u0x + v0y( )"# $% =
1
2 j

e j2! u0x+v0y( ) & e& j2! u0x+v0y( )( )



Exponential and sinusoidal signals

• Intensity images for s(x, y) = sin 2! u0x + v0y( )"# $%

x

y



System models

• Systems analysis is a powerful tool to characterize and control the
behavior of biomedical imaging devices

• We will focus on the special class of continuous, linear, shift-
invariant (LSI) systems

• Many (all) biomedical imaging systems are not really any of the
three, but it can be useful tool, as long as we understand the errors
in our approximation

• "all models are wrong, but some are useful" -George E. P. Box
• Continuous systems convert a continuous input to a continuous

output

 g(x) = S f (x)[ ]

Sf (x) g(x)

 g(t) = S f (t)[ ]( )



Linear Systems

• A system S  is a linear system if: we have

then

or in general

• Which are linear systems?

 S f (x)[ ] = g(x)

 S a1 f1(x)+ a2 f2 (x)[ ] = a1g1(x)+ a2g2 (x)

 
S wk fk (x)

k=1

K

!"
#$

%
&'
= wk S fk (x)[ ]

k=1

K

! = wkgk (x)
k=1

K

!

g(x) = e! f (x)
g(x) = f (x)+1
g(x) = x f (x)

g(x) = f (x)( )2



2D Linear Systems

• Now use 2D notation
• Example: sharpening filter

• In general

S

f (x, y) g(x, y)

 
S wk fk (x, y)

k=1

K

!"
#$

%
&'
= wk S fk (x, y)[ ]

k=1

K

! = wkgk (x, y)
k=1

K

!



Shift-Invariant Systems

• Start by shifting the input

then if

the system is shift-invariant, i.e. response does not depend on
location

• Shift-invariance is separate from linearity, a system can be
– shift-invariant and linear
– shift-invariant and non-linear
– shift-variant and linear
– shift-variant and non-linear
– (what else have we forgotten?)

 fx0y0 (x, y) ! f (x ! x0 , y ! y0 )

 gx0y0 (x, y) = S fx0y0 (x, y)!" #$ = g(x % x0 , y % y0 )



scanner

image

object

FOV

shift

shift invariantunshifted response

S

shift variant
(shape, location)

Shift invariant and shift-variant system response

f (x, y)

g(x, y)



scanner

image

object shift

shift invariantunshifted response

S

shift variant
(value)

Shift invariant and shift-variant system response

FOV

f (x, y)

g(x, y)



Impulse Response
• Linear, shift-invariant (LSI) systems are the most useful
• First we start by looking at the response of a system using a point

source at location (ξ,η) as an input

• The output h() depends on location of the point source (ξ,η) and location
in the image (x,y), so it is a 4-D function

• Since the input is an impulse, the output is called the impulse response
function, or the point spread function (PSF)  - why?

input  f!" (x, y) ! # (x $ !, y $")

output  g!" (x, y) ! h(x, y;!,")

point
object

x

y



Impulse Response of Linear Shift Invariant Systems

• For LSI systems

• So the PSF is

• Through something called the superposition integral, we can show that

• And for LSI systems, this simplifies to:

• The last integral is a convolution integral, and can be written as

 S f (x ! x0 , y ! y0 )[ ] = g(x ! x0 , y ! y0 )

 S ! (x " x0 , y " y0 )[ ] = h(x " x0 , y " y0 )

g(x, y) = f (!,")h(x, y;!,")d! d"
#$

$

%#$

$

%

g(x, y) = f (x, y)!h(x, y)   (or f (x, y)!!h(x, y))

g(x, y) = f (!,")h(! # x," # y)d! d"
#$

$

%#$

$

%



Review of convolution

• Illustration of h(x) = f (x)! g(x) = f (u)g(x " u)du
"#

#

$

original functions

g(x-u), reversed and shifted to x

curve = product of f(u)g(x-u)

area = integral of f(u)g(x-u)
= value of h() at x

x

x



Properties of LSI Systems

• The convolution integral has the basic properties of
1. Linearity (definition of a LSI system)
2. Shift invariance (ditto)

3. Associativity

4. Commutativity

g(x, y) = h2 (x, y)! h1(x, y)! f (x, y)[ ]
= h2 (x, y)!h1(x, y)[ ]! f (x, y)

h1(x, y)!h2 (x, y) = h2 (x, y)!h1(x, y)

Equivalent
arrangements



Combined LSI Systems

• Parallel systems have property of
5. Distributivity

g(x, y) = h1(x, y)! f (x, y) + h2 (x, y)! f (x, y)
= h1(x, y) + h2 (x, y)[ ]! f (x, y)



Summary of advantages of Linear Shift Invariant Systems

• For LSI systems we have

• Treating imaging systems as LSI significantly simplifies analysis
• In many cases of practical value, non-LSI systems can be approximated

as LSI
• Allows use of Fourier transform methods that accelerate computation

g(x, y) = f (!,")h(! # x," # y)d! d"
#$

$

%#$

$

%
= f (x, y)&&h(x, y)

h(x,y)f (x, y) g(x, y)

object system image



2D Fourier Transforms



Fourier Transforms

• Recall from the sifting property (with a change of variables)

• Expresses f(x,y) as a weighted combination of shifted basis
functions, δ(x,y), also called the superposition principle

• An alternative and convenient set of basis functions are sinusoids,
which bring in the concept of frequency

• Using the complex exponential function allows for compact notation,
with u and v as the frequency variables

f (x, y) = f (!,")# (! $ x," $ y)
$%

%

& d!
$%

%

& d"

e j2! (ux+vy) = cos 2! ux + vy( )"# $% + j sin 2! ux + vy( )"# $%



Exponential and sinusoidal signals as basis functions

• Intensity images for s(x, y) = sin 2! u0x + v0y( )"# $%

x

y



Fourier Transforms

• Using this approach we write

• F(u,v) are the weights for each frequency, exp{ j2π(ux+vy)} are the
basis functions

• It can be shown that using exp{ j2π(ux+vy)} we can readily calculate
the needed weights by

• This is the 2D Fourier Transform of f(x,y), and the first equation is
the inverse 2D Fourier Transform

f (x, y) = F(u,v)e j2! (ux+vy)
"#

#

$ du
"#

#

$ dv

F(u,v) = f (x, y)e! j2" (ux+vy)
!#

#

$ dx
!#

#

$ dy



Fourier Transforms

• For even more compact notation we use

• Notes on the Fourier transform
– F(u,v) can be calculated if f(x,y) is continuous, or has a finite number of

discontinuities, and is absolutely integrable
– (u,v) are the spatial frequencies
– F(u,v) is in general complex-valued, and is called the spectrum of f(x,y)

• As we will see, the Fourier transform allows consideration of an LSI
system for each separate sinusoidal frequency

 F(u,v) = F2D f (x, y){ },   and f (x, y) = F2D
-1 F(u,v){ }



Fourier Transform Example

• What is the Fourier transform of

• First note that it is separable
• So we compute

rect(x, y) =
1, for x <1 / 2  and y <1 / 2
0, otherwise

!
"
# x

y

rect(x,y)

rect(x, y) = rect(x)rect(y)

 

F1D rect(x){ } = rect(x)e! j2"ux
!#

#

$ dx

= e! j2"ux
!1/2

1/2

$ dx = 1
j2"u

e! j2"ux
!1/2

1/2

= 1
"u

e j"u ! e! j"u

j2
= sin("u)

"u
= sinc(u)F2D rect(x, y){ } = sinc(u,v)Thus



Fourier Transform Example

rect(x, y) sinc(u,v)

 F2D f (x, y){ }! F(u,v)



Two Key Properties of the 2D Fourier Transform

• Linearity

• Scaling

 F2D a1 f (x, y)+ a2g(x, y){ } = a1F(u,v)+ a2G(u,v)

 
F2D f (ax,by){ } = 1

ab
F u

a
, v
b

!
"#

$
%&



Signal localization in image versus frequency space

Higher spatial frequencies

more
localized

more
localized

less
localized

less
localized



Fourier Transforms and Convolution

• Very useful!
• Proof (1-D)

 F2D f (x, y)! g(x, y){ } = F(u,v)G(u,v)

 

F f (x)! g(x){ } = f (x)! g(x)( )e" j2#ux
"$

$

% dx

= f (
"$

$

% &)g(x " &)d&
'

()
*

+,
e" j2#ux

"$

$

% dx = f (&)
"$

$

% g(x " &) e" j2#ux dx
'

()
*

+,"$

$

% d&

= f (&)
"$

$

% F g(x " &){ }'

()
*

+,"$

$

% d& = f (&) e" j2#u&G(u)( )
"$

$

% d&

= G(u) f (&)e" j2#u&
"$

$

% d& = F(u)G(u)



Fourier transform pairs

• Note the reciprocal symmetry in Fourier transform pairs
– often 2-D versions can be calculated from 1-D versions by seperability
– In general: a broad extent in one domain corresponds to a narrow extent in the other

domain



Summary of key properties of the Fourier Transform



Transfer Functions



Transfer Function for an LSI System

• Recall that for an LSI system

• We can define the Transfer Function as the 2D Fourier transform of
the PSF

• In this case the LSI imaging system can be simply described by:

• or

• which provides a very powerful tool for understanding systems

g(x, y) = f (x, y)!h(x, y) = f (",#)h(" $ x,# $ y)d" d#
$%

%

&$%

%

&

Sf (x, y) g(x, y)

 H (u,v) = h(!,")e j2# (u!+v")d! d"
$%

%

&$%

%

& = F2D h(x, y){ }

 g(x, y) = f (x, y)!h(x, y) = F2D
"1 F(u,v)H (u,v){ }

G(u,v) = F(u,v)H (u,v)



Illustration of transfer function

2-D FT

H (u,v) = ae!"a
2 (u2 +v2 )

Inverse 2-D FT

f (x, y)

F(u,v)

g(x, y)

G(u,v)
a1 a2 > a1

h(x,y)f (x, y) g(x, y)



X-ray Radiography



Definitions

• Ion: an atom or molecule in which the total number of
electrons is not equal to the total number of protons,
giving it a net positive or negative electrical charge

• Radiation: a process in which energetic particles or
energetic waves travel through a medium or space



Ionizing Radiation
• Radiation (such as high energy

electromagnetic photons behaving like
particles) that is capable of ejecting
orbital elections from atoms

• Can also be particles (e.g. electrons)
• Ionizing energy required is the binding

energy for that electron's shell
• Energy units are electron volts (eV or

keV), the energy of an electron
accelerated by 1 volt

• For Hydrogen K orbital electrons, E=13.6
eV

• For Tungsten K orbital electrons, E=69.5
keV

• In medical imaging we need photons with
enough energy to transmit through tissue
so are in range of 25 keV to 511 keV and
is thus ionizing

Energies for Tungsten (W)

+



Electrons as Ionizing Radiation
• Electron kinetic energy
• Three main modes of interaction in

the energy range we are
considering
a) Collision with other electrons and

possible creation of delta-rays
(high-energy electrons)

– This is the most common mode and
excited atoms loose energy by IR
radiation (heat)

b) Ejection of an inner orbital electron
– This orbit is filled by an outer

electron and the difference in
energy is released as a
'characteristic x-ray'

c) Bending of trajectory by nucleus
– Since acceleration of a charged

particle causes radiation, this
causes 'braking radiation' or
bremsstrahlung

E = (mv2 ) / 2



When high energy electrons hit tungsten (symbol W), three effects occur
1. Heat (> 99.9% of the energy)
2. Characteristic x-rays
3. Bremsstrahlung x-rays

X-ray Spectrum from Electron Bombardment

Energies for Tungsten (W)

59.321 keV

69.081 keV

W
e-

ΔV
accelerating voltage


