2D Signals and Systems



Signals

»Assignal can be either continuous  f(x), f(x,y), f(x,y,2), f(X)
* or discrete ketc. where i,j,k index specific coordinates

i,],
- Digital images on computers are necessarily discrete o R
sets of data W —

DFOV 33.0cn - i 2= ar 512

* Each element, or bin, or voxel, represents some value,
either measured or calculated
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Digital Images

- Real objects are continuous (at least above the quantum level), but we
represent them digitally as an approximation of the true continuous process
(pixels or voxels)

» For image representation this is usually fine (we can just use smaller voxels
as necessary)
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» For data measurements the element size is critical (e.g. Shannon's sampling
theorem)

« For most of our work we will use continuous function theory for convenience,
but sometimes the discrete theory will be required



Important signals - rect() and sinc() functions

1D rect() and sinc() functions
— both have unit area

1, for |x|<1/2

t —
() rect(x) {O, for |x|>1/2

, sin(7rx sinc(x)
(b) sinc(x)= () 4
X
rect(x) .
A what is sinc(0)?
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Important signals - 2D rect() and sinc() functions

2D rect() and sinc() functions are straightforward generalizations

1, for|x|<1/2 and |y|<1/2

0, otherwise

(@) rect(x,y)= {

sin(7rx)sin(ry)
2
U Xy

(b) sinc(x,y)=

Try to sketch these
3D versions exist and are sometimes used

Fundamental connection between rect() and sinc() functions and very
useful in signal and image processing



Important signals - Impulse function

* 1D Impulse (delta) function

* A'generalized function'
operates through integration
has zero width and unit area
has important 'sifting' property

|

can be understood by considering:

« Ways to approach the delta function
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Exponential and sinusoidal signals

* Recall Euler's formula,which connects trigonometric and
complex exponential functions
e’ = cos(8) + jsin(0) (not i)

* The exponential signal is defined as:

e’’™ =cos(27x)+ jsin(2wx), where j* =—1

* Uy and v, are the fundamental frequencies in x- and y-
directions, with units of 1/distance (x, y)= ¢/ x )

- We can write e(x,y) = ¢/ o))
— cos[27r(u0x + voy)] + jsin[27r(u0x + voy)]

— G _/
Y V

real and even imaginary and odd



Exponential and sinusoidal signals
1

- Recall that Sin(zﬂ:X) = 2_j(ej27rx . e—j277:x)
1 27X —j27mx
cos(27rx):5(ef2 + e /? )
1 1 2r(ugx+v, —j2m(ugx+v
* SO we have 31n|:27[(u0x+voy):|:2_j(612 (2 oy)_e J2m(ug oy))
1 27w ugx+v, —j2r(ugx+v,
COS[Zﬂ(qu+voy)]:5(612 (20 0)’)_|_e j2m(u Oy))

Fundamental frequencies u,, v, affect the oscillations in x and y
directions, E.g. small values of u, result in slow oscillations in the x-
direction

These are complex-valued and directional plane waves



Exponential and sinusoidal signals

Intensity images for  s(x,y) = sm[27t Uy X + voy

Uy = ik , Vo= 0 Uy = 2 Vg = 0 Uy = 4 Vg = 0

VAN

Uy = 4 Vg = 1 Upg = 4 Uo:— 2 Uy = 4 Vg = 4

‘




System models

- Systems analysis is a powerful tool to characterize and control the
behavior of biomedical imaging devices

«  We will focus on the special class of continuous, linear, shift-
invariant (LSl) systems

- Many (all) biomedical imaging systems are not really any of the
three, but it can be useful tool, as long as we understand the errors
In our approximation

- "all models are wrong, but some are useful" -George E. P. Box

« Continuous systems convert a continuous input to a continuous
output

g = f0)] (st)=e/[f1)])

J&x) = of > gx)




Linear Systems

- Asystem (/ is a linear system if: we have & | f(x)]|= g(x)

then d[cﬁfl(x) +a,f, (x)] =a,g(x)+a,g,(x)

or in general d[iwkfk (x)} = iwk d[fk (x)] = Zwkgk(x)

- Which are linear systems? g(x)=¢" f(x)
gx)=f(x)+1
g(x)=xf(x)

gx)=(f(x))



2D Linear Systems

 Now use 2D notation

- Example: sharpening filter
b 4

(0,0) X

f(x,y)

* In general

K

d[zwk‘fk('x’y}} — zwk d[fk(x’y)] — Zwkgk(x’y)

k=1



Shift-Invariant Systems

+ Start by shifting the input ~ f, = (x,y) = f(x—xy,y—,)

T e = e [, )]= s x )

the system is shift-invariant, i.e. response does not depend on
location

 Shift-invariance is separate from linearity, a system can be
— shift-invariant and linear
— shift-invariant and non-linear
— shift-variant and linear
— shift-variant and non-linear
— (what else have we forgotten?)



Shift invariant and shift-variant system response

unshifted response  shift invariant shift variant
(shape, location)




Shift invariant and shift-variant system response

unshifted response  shift invariant shift variant
(value)



Impulse Response

« Linear, shift-invariant (LSI) systems are the most useful

« First we start by looking at the response of a system using a point
source at location (£,17) as an input

point
object

input f,(x.)=8(x—&,y-1n)

—

3
Yy
/% output g.,(x.3) 2 h(x,y;E,1)
Input f System & Output g

« The output h() depends on location of the point source (&,77) and location
in the image (x,y), so itis a 4-D function

« Since the input is an impulse, the output is called the impulse response
function, or the point spread function (PSF) - why?



 So the PSF is

Impulse Response of Linear Shift Invariant Systems
» ForLSIsystems  of | f(x—x,,y = ¥,)| = 8(x = x5,y = ¥,)

o [8(x —xy,y = y)| = h(x = x,y = ¥,)

« Through something called the superposition integral, we can show that
g =] | fEmhtx,y:Emdédn

« And for LSI systems, this simplifies to:

gy =] | FEMRE-xn-y)dédn

* The last integral is a convolution integral, and can be written as

g(x,y)= f(x,y)*h(x,y) (orf(x,y)**h(x,y))



Review of convolution

+lllustration of fi(x) = f(x)* g(x) = f;f(u)g(x — u)du
£ A

> original functions

area = integral of f(u)g(x-u)
= value of h() at x




Properties of LS| Systems

* The convolution integral has the basic properties of

1. Linearity (definition of a LS| system)
2. Shift invariance (ditto)

3. Associativity g(x,y)=h,(x,y)* [hl(x,y) ¥ f(x,y)]
= [ ey ey f(xy)
4. Commutativity p (x,y)*h,(x,y) = h,(x,y)* h (x,y)

[ f g

hy N h 2

Equivalent {1
arrangements

\ > h1*h2 —




Combined LS| Systems

- Parallel systems have property of
5. Distributivity

g(x,y)=h(x,y)* f(x,y)+ h,(x,y) * f(x,y)
= [hl(x9y)+ hz(xay)] * f(x’y)

> hy
I, (%)_.g S . <,
> h,




Summary of advantages of Linear Shift Invariant Systems

For LSI systems we have fx,y) — h(xy) —g(x,y)

object system image

gy)=| | FEMIE-xn-y)dEdn
= f(x,y)**h(x,y)

Treating imaging systems as LSI significantly simplifies analysis
In many cases of practical value, non-LSI systems can be approximated
as LS|

Allows use of Fourier transform methods that accelerate computation



2D Fourier Transforms



Fourier Transforms

Recall from the sifting property (with a change of variables)

fay= [ | FEMSE-xn-y)dEdn

—00 —OO

- Expresses f(x,y) as a weighted combination of shifted basis
functions, o(x,y), also called the superposition principle

* An alternative and convenient set of basis functions are sinusoids,
which bring in the concept of frequency

« Using the complex exponential function allows for compact notation,
with u and v as the frequency variables

ej27t(ux+vy) — COSI:27T(MX+ Vy):|+ jsinl:zn'(ux+ vy):l



Exponential and sinusoidal signals as basis functions

* Intensity images for s(x,y)= s1n[27t UyX + Vo)’

Uy = ik , Vo= 0 Uy = 2 Vg = 0 Uy = 4 Vg = 0

VAN

Uy = 4 Vg = 1 Upg = 4 Uo:— 2 Uy = 4 Vg = 4

‘




Fourier Transforms

Using this approach we write

f(x,y)= J jF(u,v)eﬁ”(””Vy) dudv

- F(u,v) are the weights for each frequency, exp{ j2r(ux+vy)} are the
basis functions

* |t can be shown that using exp{ j2x(ux+vy)} we can readily calculate
the needed weights by

F(u,v)= J Jf(x,y)e_ﬂ”(”x+vy) dxdy

—00 —OO

« This is the 2D Fourier Transform of f(x,y), and the first equation is
the inverse 2D Fourier Transform



Fourier Transforms

*  For even more compact notation we use

F(u,v)=FZp {f(x,)}, and f(x,y)=F;) {F(u,v)}

* Notes on the Fourier transform

— F(u,v) can be calculated if f(x,y) is continuous, or has a finite number of
discontinuities, and is absolutely integrable

— (u,v) are the spatial frequencies
— F(u,v) is in general complex-valued, and is called the spectrum of f(x,y)

« As we will see, the Fourier transform allows consideration of an LSI
system for each separate sinusoidal frequency




Fourier Transform Example

rect(x,y)
* What is the Fourier transform of
1, for |x|<1/2 and |y|<1/2 —*
rect(x,y) = . /.
0, otherwise X
- First note that it is separable rect(x,y) = rect(x)rect(y)
* S0 we compute 7 {rect(x)} _ J.rect(x) o 12T
1/2 1
— J e—j27tux dx: : e—j27rux 1/12/2
o j2mu -
1 e/™ — ™™ _ sin(7tu)
Tu j2 Tu
= sinc(u)

Thus F5p 1rect(x,y) | = sinc(u,v)



Fourier Transform Example

sinc(u,V)

rect(x,y)



Two Key Properties of the 2D Fourier Transform

- Linearity Ap {alf(x,y) + azg(x,y)} =aF(u,v)+a,G(u,v)

o Sca”ng 9;]) {f(ax by)} = WF( u V)



Signal localization in image versus frequency space

less
localized

more
localized

more
localized

less
localized

Magnitude spectrum

Decreasing high-frequency content




Fourier Transforms and Convolution

- Very useful! Fop 1 f(x,y)* g(x, )} = F(u,v)G(u,v)
*  Proof (1-D)

F{f ) g} = [ (f(x)*g(x))e ™ dx
= | ( | r&gx- §)d§]e‘j = | f (5)( | gx—& e dX]dﬁ

- | f@U 7 {g<x—é>}]d5 = [ F@ (e Gw)dg

=G) | f(&)e*™ dé = Fu)G(u)



Fourier transform pairs

Signal Fourier Transform

1 §(u,v)

8(x,y) 1

5 (x — X0,y — Y()) e—j2n(ux0+vy0)

8s (x, y; Ax, Ay) comb(#Ax, vAy)

ej27r(u0x+voy) 5(14 — Uy, v — VO)

sin [27 (1ox + voy)] 21/ [6 (¢ — uo, v — vo) — & (. + uo, v + vo)]
cos [27 (uox + voy)] 218 (w — o, v — v0) + 8 (u + uo, v + v9)]
rect(x, y) sinc(u, v)

sinc(x, y) rect(u, v)

comb(x, y) comb(u, v)

T +y%) o~ U +v?)

* Note the reciprocal symmetry in Fourier transform pairs
— often 2-D versions can be calculated from 1-D versions by seperability

— In general: a broad extent in one domain corresponds to a narrow extent in the other
domain



Summary of key properties of the Fourier Transform

Theorem flx,y) F(u,v)
cr A i uv
Similarity f(ax,by) 2b] F (a’ b)
Addition flxy) + g(xy) F(u,v) + G(u,0)
Shift f(x —a,y — b) e~ 2 E(y 1)

. w w
Modulation f(xy) cos wx iF (u F o v) +3F (u ~ o v)
Convolution flxy) = g(xy) F(u,0)G(u,v)

Autocorrelation flxy) * f¥(—x,~y) |F(u,0)|?
Rayleigh Jio f io |f(x,y) | dx dy = [io ﬁo |F(u,0)|* du dv
Power Jio Jio flxy)g*(x,y) dx dy = jio Jio F(u,0)G*(u,v) du dv
Parseval J E J E P =D a,’
where F(,0) = > 4,,[*8(u — m, v — n)]
; & d \"( 9 ; ;
Differentiation (ax) ( ) f(x,y) (27riu)"(2mriv)"F(u,v)



Transfer Functions



Transfer Function for an LS| System

Recall that for an LS| system f(x,y) — of

— g(x,y)

g(x.y)= faey)xh(x.y)= | [ FEME=xn-y)dEdn

We can define the Transfer Function as the 2D Fourier transform of

the PSF

Huy)= | [ hEme? M dédn = 5, {h(x,y)}

* In this case the LS| imaging system can be simply described by:

g(x,y)= f(x,y)*h(x,y)=F, {Fu,v)H u,v)}

© or Gu,v)=Fu,v)H(u,v)

- which provides a very powerful tool for understanding systems



lllustration of transfer function f(x,y) +ax,y) > g(x,y)

F(u,v

~—"Magnitude spectrum

a

g(x,y)

Inverse 2-D FT
A

G(u,v)

A
a,>a,




X-ray Radiography



Definitions

 lon: an atom or molecule in which the total number of
electrons is not equal to the total number of protons,
giving it a net positive or negative electrical charge

» Radiation: a process in which energetic particles or
energetic waves travel through a medium or space



lonizing Radiation

Atom =+ Ion
Radiation (such as high energy e
electromagnetic photons behaving like
particles) that is capable of ejecting @ o |=> @ O

orbital elections from atoms
Can also be particles (e.g. electrons)

lonizing energy required is the binding Rashation
energy for that electron's shell

Energy units are electron volts (eV or
keV), the energy of an electron
accelerated by 1 volt Energies for Tungsten (W) O Binding e

For Hydrogen K orbital electrons, E=13.6 2P 02
eV P G —
For Tungsten K orbital electrons, £E=69.5
keV

In medical imaging we need photons with Bl 102
enough energy to transmit through tissue L

so are in range of 25 keV to 511 keV and g

is thus ionizing

1.3, [ X

K e 695



Electrons as lonizing Radiation

- Electron kinetic energy E = (mv®)/2

 Three main modes of interaction in
the energy range we are

considering
a) Collision with other electrons and
possible creation of delta-rays Delt
(high-energy electrons) ©

— This is the most common mode and | (2) = 7R\
excited atoms loose energy by IR ()
A

radiation (heat) toms

b) Ejection of an inner orbital electron Ejected electron

— This orbit is filled by an outer
electron and the difference in
energy is released as a (b)
‘characteristic x-ray'

c) Bending of trajectory by nucleus

0]

Characteristic x-ray

— Since acceleration of a charged
particle causes radiation, this
causes 'braking radiation' or
bremsstrahlung

Nucleus

0]

(c)

Bremsstrahlung x-ray




X-ray Spectrum from Electron Bombardment

When high energy electrons hit tungsten (symbol W), three effects occur
1. Heat (> 99.9% of the energy)
2. Characteristic x-rays o
3. Bremsstrahlung x-rays o » W

—— AV ——»

accelerating voltage

1L Characteristic Energies for Tungsten (W) <aPaey Bi“di{“feﬁ'}“"’gf‘
radiation (tungsten) 2P 0.02
120 — 006
. 32N — .
2 66.950 keV 18M 2.5
% " 67.244 keV 69.081 keV
e - | 69.081 keV '
2 8L 10.2
<
2 04}
= 59.321 keV
&) Bremsstrahlung g ““““““‘2‘;{ ““““ v & e
0.2 - radiation )
0 ' , | \
0 20 40 60 80 100 120

X-ray photon energy, keV



